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J .  Phys.: Candens. Matter 6 (1994) 1577-1592. Printed in the UK 

On non-linear optical properties of semiconductor 
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Institute of Theoretical Physics. Warsaw University, Hoia 69, 00-681 Warszawa, Poland 

Received 2 August 1993 

Abstract. It is shown that Floquet states follow adiabatic changes of laser pulses unless quasi- 
energies meet avoided crossings. At these avoided crossings quantum systems jump from one 
Floquet state to another with significant probability rates. These tmnsitions, which we call 
the optical Landau-Zener transitions, lead to modifications of the power s p e c "  of scattered 
radiation, increasing its background significantly. It is shown, on the basis of numerical model 
calculations, that there is a connection between the chaotic behaviour of scamred radiation, 
measured by the autocorrelation function of its power spectrum, and the spectrum of quasi- 
energies for different light intensities. Namely, it appears that the more avoided crossings a 
quantum system passes during the switching an and off of the laser pulse the more chaotic is 
the power s p e d "  of scaltercd radiation. Resonant scattering of elenrons by quantum wells is 
also considered. 

1. Introduction 

Recently the non-linear optical processes in semiconductor heterastructures (and, to a lesser 
degree, metal crystallites embedded in transparent dielectrics) have received considerable 
attention. This interest is motivated and justified on both fundamental and technological 
grounds. The technological aspect is related to the need for materials the optical properties 
of which can surpass those of electronic devices, or can open new possibilities in information 
processing and transmission that are not accessible with present day electronics technology 
(Flytzanis A d  Oudar 1986, Hutcheson 1987). The current attention is mostly directed 
towards artificial heterogeneous semiconductor microstructures where quantum confinement 
plays a central role and the full understanding of which is challenging for fundamental 
research. In one dimension such a confinement has been extensively studied in quantum 
wells, because their fabrication techniques have reached a high degree of precision and 
sophistication (see, e.g., Kelly and Weisbuch 1986). In contrast, the study of confinement 
effects in three dimensions has not kept up the same pace because of the lack of  good^ 
fabrication techniques, these are still rather primitive when compared with those used to 
make one-dimensional quantum wells and other artificial microstructures (see, e.g., Kastner 
1993, Beaumont and Torres 1990). 

The semiconductor nanostructures occupy a position intermediate between a molecule 
and the bulk semiconductor. Therefore, it is a delicate problem to decide which model 
should be chosen in order to describe as well as possible the physical properties of such 
materials. Certainly, such a choice is dictated by the prominence of one feature over another 
but also by the complexity of the underlying calculations. For materials interacting with 
strong electromagnetic radiation the situation is much worse, because virtually no theoretical 
methods developed for radiationless problems can be adapted for this case. The reason of 
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this is that strong radiation not only significantly modifies physical processes, such as for 
instance high-harmonic generation, but also crucially modifies matter itself to such an extent 
that its properties cannot further be explained in terms of radiationless quantities or notions, 
as will be shown shortly. 

Recently we have observed increasing interest in optical intersubband processes in 
semiconductor heterostructures such as for instance quantum wells. This interest is due, 
in part, to the large dipole matrix elements for these transitions (West and Egalsh 1985, Mii 
et al 1990, Asai and Kawamura 1991). Among others, such processes as infrared detection 
(Levine et al 1989), second-harmonic generation (Rosencher er nl 1989, Sirtori er al 1991), 
and non-linear refraction and absorption (Cotter et al 1991, Morrison and Jaros 1990% 
Walrod et al 1991, Burt 1993b) have been investigated. Moreover, it has been found that 
for a deep and wide quantum well the dipole ma’aix element for an interband transition can 
be much larger than that for allowed intersubband transitions (Burt 1993a). This means that 
studies of non-linear optical properties of semiconductor heterostructures in the presence of 
intense laser fields become more and more important not only from the fundamental point 
of view, but also from the applied one. We discuss in this paper some qualitative aspects 
of the interaction of intense radiation with matter, without relating them to a particular 
quantum system. 

Since we nre interested in the interaction of matter with radiation generated by lasers, 
i.e., with a special kind of radiation characterized by its very high intensity and its coherence 
properties, the quasi-classical approximation of a laser field becomes adequate (see, e.g., 
Manakov et a[ 1986). For a single-mode field this approach consists in treating the 
electromagnetic vector potential not ai an operator but as a function that fulfils the classical 
Maxwell eqilations. For a multi-mode field, however, such an approximation is not further 
applicable because the quantum character of radiation implies that in the limit of large 
intensities the electromagnetic vector potential has to be treated as a stochastic process, 
an ensemble average over which should be performed at the end (Biafynicki-Birula and 
Biafynicka-Birula 1976, Mittleman 1982). This means that it suffices to determine different 
kinds of cross section for a single-mode laser field and afterwards to average them over 
stochastic changes of laser-field parameters. This paper deals with the first part of this 
procedure. The second part is usually much more difficult to perform, especially if one 
wants to account for the interaction of radiation with matter in a non-perturbative manner; 
For a low-frequency radiation field a general procedure was presented by Kamiriski (1988). 
One can read more about the quasi-classical approximation for the interaction of an intense 
radiation field with matter in the articles by Biafynicki-Birula and Biafynicka-Birula (1976), 
Manakov et nl (1986) and Ehlotzky (1985), and the book by Mittleman (1982). Let me 
also note that the quasi-classical and the quantum formalisms in the limit of large intensities 
give equivalent results and that the notion ‘multiphoton processes’ can also be used in the 
quasi-classical formalism. 

The plan of this paper is as follows. In sections 2 and 3 we consider an n-state quantum 
system interacting with the laser pulse. The motivation for considering this model is the fact 
that most of the physical systems we must deal with fall into the category of ‘unsolvable’ 
quantum systems: that is, the solution of the corresponding equations of motion cannot be 
expressed in a form of integrals and special functions the properties of which are very well 
known (this is, I would say, a ‘nineteenth century’ definition of solubility), or the dynamic 
equations cannot be solved numerically quickly, so that it is not possible to analyse the 
response of a system to the ‘almost  continuous' change of parameters that describe the 
quantum system itself or determine the coupling to the external field. In our thinking about 
such complicated systems it is useful to have as a guide a simple system that can be treated 
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quickly and in detail. That is what the present work is intended to provide. The n-state model 
has  been frequently used in condensed-matter physics. For instance, it has been analysed in 
the context of optical bistability in  solids (Goll and Haken 1980, Gibbs 1985) or in the study 
of ultrafast optical response in semiconductor heterostructures (Morrison and Jaros 1990b, 
Morrison et a1 1989, Kaminski 1991). Of course such a model is greatly oversimplified 
because, for instance, it neglects the relaxation processes. However, it is hoped that for 
nltnfast optical pulses~ considered in this work these processes can be neglected and the 
predictions obtained are qualitatively correct. It is shown in section 2 how excited states 
of quantum wells or conducting subbands of superlattices can efficiently be populated by 
a short laser pulse. It appears that this phenomenon can be linked to the so-called optical 
Landau-Zener transitions between Floquet states at the avoided crossings of quasi-energies 
(Kamidski 1991). In section 3 we show that non-adiabatic Landau-Zener transitions lead 
to a strong enhancement of the power spectrum of scattered laser pulses and to the strong 
generation of higher harmonics. In particular we observe additional peaks in the power 
spectra that are strictly related to these non-adiabatic transitions. In section 4 we analyse a 
two-well model showing that 'random' distribution of avoided crossings of quasi-energies 
and the chaotic scattering of laser pulses are closely connected with each other. Section 5 
contains the discussion of the resonant scattering of electrons by quantum wells. It is shown 
that resonant peaks in the reflection probabilities are strongly shifted when the intensity of 
radiation increases. In our investigations we have neglected the position dependence of 
the effective masst, which could lead to some exotic phenomena (see, e.g., Lhy-Leblond 
1992). In section 6 we present some suggestions for further investigations. 

2. n-state quantum system in strong laser pulses 

The dynamics of an n-state quantum system interacting with a strong laser pulse is governed 
by the Hamiltonian 

n " 
H ( t )  = ~ C E i [ i ) ( i [ + X ( t ) s i n ( o t )  dijli)(jl (2.1) 

i = l  i.j-1 

where h(t) is an envelope of the oscillating electric field, slowly changing in time (as 
compared to the period of oscillations of electric field, i.e., to T = 2a/w), which is 
supposed to describe the laser pulse, Ej are the energy levels without the external field, 
and di, are the electric dipole transition moments between these levels. Such a model can 
easily be  studied numerically (even with the help of personal computers if n is not too 
large) because it reduces to the finite system of ordinay differential equations, for which 
there exist accurate numerical subroutines (see, e.g., Shampine and Gordon 1975, Hairer 
er al 1987). From the very beginning.of quantum'mechanics an n-state quantum system 
has served as its paradigm$, i.e., as a sufficiently simple conceptual model that embodies 
the important features of a large class of problems that can be considered by quantum 
mechanics. Despite the obvious limitations of such models they provide systems that can 
be studied in detail and can give a faster and deeper insight for more realistic quantum 
systems. 

t The effective mass approximation for semiconductor'heterosVuctures is analysed in the articles by Bun (1992) 
and Bastard etol (1991). 
$ The crucial role of this notion in physics is discussed by Kuhn (1962, 1977). 
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Since even such a simple model is difficult to study with the help of purely analytical 
methods if we want to investigate non-perturbative effects, we shall concentrate on numerical 
analysis of this model and on the graphical presentation of results. Let us consider first the 
three-level system characterized by its energies El = 0, Ez = 1.25 and E3 = 1.27, and by 
the non-vanishing electric dipole moments dlz = 2, d13 = lt. Moreover, the laser field is 
determined by its central frequency w = 0.3 and by the form of its envelope, which we 
choose as$ 

where 61 e CT~. The asymmetric form of this envelope is to describe a real laser pulse, 
which is usually rapidly switched on~and then slowly switched off. 

Having defined all parameters of our system we can solve numerically the Schrodinger 
equation and calculate the probabilities p i @ )  that the system at time t is in the unperturbed 
state li). For sufficiently intense laser fields these probabilities are very rapidly changing 
functions of time. Therefore, in order to avoid ‘black areas’ in figures, these probabilities 
are plotted for a sufficiently dense set of discrete values o f t  that for times for which p i ( t )  
change their values slowly (this corresponds to weak electric fields) the plots look like 
continuous curves, as in fact they are. We see in figures 1 and 2 that the first excited state 
is finally not populated although for intermediate times the probability pz(t )  significantly 
differs from zero. Hence, we observe the selective population only of the second excited 
state 13)s. Such a ‘strange’ behaviour can be understood by looking at the spectrum of 
quasi-energies for our model. 

Quasi-energies for systems driven by a force periodic in time are the straightforward 
generalization of energies of stationBiy states (see, e.g., Manakov et al 1986). That is, for 
an envelope of the electric field constant in time, i.e., for h(t) = h, the Hamiltonian of our 
system is a periodic operator of time with the period equal to T = &/W. Thus, due to the 
Floquet theorem, an arbitrary solution of the Schrodinger equation is a linear combination 
of Floquet states that fulfil the following conditions: 

lei (0) = eXp(-iEi (W) I@ (0) 
l q $ ( t + T ) ) = [ @ { ( t ) )  f o r i = I ,  ..., n. (2.3) 

The quantities &(A) are called quasi-energies. Quasi-energies are defined modulo o, which 
means that the spectrum of quasi-energies consists of an enumerate number of the so-called 
Brillouin zones of width equal to w . ~  We encounter a similar situation in solid-state physics 
where the quasi-momentum is also not defined uniquely. 

t Such a physical system can be realized in practice by an asymmetric quantum well (Mii et nl 1990). In our 
furlher investigations we consider systems with other non-vanishing dipole elements arriving at the same qualitative 
results. This shows that the phenomenon discussed in this paper is a generic one; i.e., independent of a chosen 
quantum system. 
$ Let me emphasize that the numerical values of parameters of our three-level system are not crucial for the 
analysis presented in this paper; one could equally choose other values arriving at the same qualitative results (see 
the article by Kamidski (199i) where the discission of units is also presented). 
5 Let me note here that many chemical reactions can occur much faster or take place at all provided that at least 
one of the ractmts is in a given excited state (Whitehead 1988). As we have seen such a selective excitation 
cm be performed with a shorl laser pulse. This mems that the laser pulse itself plays the role of let us say ’on 
uncfmventiannl curnlyst or enzyme’. Other aspects of controlling quantum dynamics with laser pulses ate discussed 
in the anicie by Warren era1 (1993). 



Non-linear optical properties of heterostructures 2581 

X 

Figure 1. Occupation probabilities p i @ )  for i = 1,2, 3 as functions of the scaled time 
x = t/IOT, T = 2x10, o = 0.3 (in arbitmy units). The laser pulse is determined by 
equation (2.2) with U, = 10T, = IOOT and by the peak intensity defined by the dimensionless 
parameter = A&/* = 1.63. The three-state quantum system is characterized by its energies 
El = 0, E2 = 1.25, E3 = 1.27 and by the electric dipole elements dlz = 2, d13 = 1 (in 
arbitnry units). Let us emphasize that the occupation probabilities p i ( t )  are continuous functions 
of time. However, they change their numerical values very rapidly for limes c.orresponding 'to 
'sufficiently' large electric fields. Therefore, i n  order to avoid 'black areas', these functions are 
plotted for 'sufficiently' dense discrete values bf I that in domains where the probabilities do not 
change their values rapidly the plot looks like a continuous curve (as in fact it is). The ground 
State is initially occupied with the probability equal IO unity, 

0.J -  ' ' ' ' ' ' ' ' '. 
0 10 20 30 40 0 10 20 30 bo 

X 
Figure 2. The same as figure I but far A, = 1.645. 

Two Brillouin zones of the spectrum of quasi-energies as functions of the dimensionless 
parameter A,, = (for which units f i  = c = m = 1 are used here) for our three-level 
model are plotted in figure 3. This figure exhibits the avoided crossing of quasi-energies 
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El@.) and &(A) for h,,~ < 2, whereas the first avoided crossing for &(A) appears for 
A,, > 2. This difference in the behaviour of quasi-energies is precisely the reason that only 
the third state is excited for A,, = 2. ‘The reason why the avoided quasi-energy crossings 
are so important for the dynamics of quantum systems interacting with laser pulses is that 
in the vicinity of an avoided crossing the corresponding Floquet states change their form 
significantly. This means that for sufficiently short pulses, they do not have enough time 
to accommodate to a new ‘environment’ and the system jumps from one Floquet state to 
another with a significant probability. Quantitatively, the probability P of such a jump is 
described by the formula (Breuer and.Holthaus 1989)t 

(2.4) 

where Sh is equal to a change of the intensity of electric field for which the distance between 
the corresponding quasi-energy levels within a given Brillouin zone increases by the factor 
A, whereas Se is the distance between these quasi-energies at the avoided crossing. A is 
the time derivative of h(t) and h, is the position of the considered avoided crossing. It 
follows from this expression that system does not jump from one quasi-energy surface to 
another provided that 

(?)I >>I 
A A ,  

Indeed, the numerical calculation shows that for our three-level model and for A,, = 2 the 
state 13) is excited with a negligible probability if the times of switching on and of switching 
off are very long compared to the period of oscillations T = 2n/o, i.e., for very small A 
and given SE and SA. This fact is also confirmed by the avoided crossing of two excited 
states at approximately A,, = 0.5. This avoided crossing is so broad that it does not effect 
the find population of the first excited state 12). 

It follows from figures 1 and 2 that even a relatively small increase of the peak intensity 
of a laser pulse (in OUT case from A,, = 1.63 to A,, = 1.645) can lead to a significant 
change of population probabilities of excited states. In fact these probabilities are oscillating 
functions of the peak intensity. Sucti-oscillations have been known since 1932 in atomic 
collisions and are called the Stueckelberg oscillations (Stueckelberg 1932). They depend on 
the form of avoided crossings and will be discussed elsewhere. 

3. Avoided crossings and scattering of laser pulses 

The behaviour of a system in the vicinity of avoided crossings has a significant impact on 
the time dependence of induced electric dipole moments, which leads to modifications of 
the power spectrum of the observed scattered light. In order to show this let us consider 
a two-level model, the quasi-energy spectrum of which is plotted in figure 4. It follows 
from this figure that the first avoided crossing appears at hsc just greater than two. We 
can expect, therefore, that for hSc c 2 the power spectrum of scattered light will consist 

t Let me note that this is the quantitative expression for the transition probability only for very sharp avoided 
crossings and remains a qualitative one for broad avoided crossings; a mathematically rigorous discussion of the 
so-called ‘exponential approach to the adiabatic limit’ is presented in the articles by Hagedorn (1991). Joye and 
Pfister (1991) and J a i C  and SepR (1992). 
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Figure 3. Twq Brillouin zones of the Floquet spectrum 
(quasi-energies €;(A) modulo o) for the three-state 
quantum system chancterized by its energies El = . 
0. E2 = 1.25, E3 = 1.27 and by the electric dipole 
elements di2 = 2,d13 = 1 (in arbitrary units). ~~ 

The quantities E;(l)/o are planed as functions of 
dimensionless parameter A,, = for o = 0.3 (in 
arbitrary units). The numbers an the crimes show which 
quasi-energy curves correspond to the unperturbed 
energies E!. 

Figure 4. The Same as figure 3 but for the two-level 
model with El = 0, E2 = 1, d12 = 1 and o = 0.6. 

of separate peaks with frequencies that are multiples of the central frequency of the laser 
pulse. On the other hand, for hSc 2 2 we should observe qualitatively new effects. Indeed, 
such a situation takes place, as is illustrated in figure 5. In this figure in the upper row are 
plotted power spectra of scattered light for the Gauss envelope (2.2) but for different peak 
intensities. In the lower row are plotted power spectra for the same peak intensity but for 
different shapes of the pulse, chosen as: 

and 

(3.2) 

The non-perturbative method of calculation of power spectra of scattered radiation has 
already been presented in the articles by Eberly et ul (1989) and Potvliege and Shakeshaft 
(1989). However, for the sake of clarity we describe the main steps of this method, which 
in principle consists in numerical integration of the Schrodinger equation with the Hamilton 
operator (2.1). This equation consists of the system of n ordinary differential equations, 
which we write as 
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0 5 10 0 

f l l w  
Figure 5, The power spectn Sj(Q) for i = I as a function of Qlo f o r o  = 0.6 and for the 
two-state model characterized by its energies El = 0, E2 = 1 and by the electric dipole element 
dt2 = 1. The ground slate is initially occupied. In the upper row the laser pulse is defined 
by the envelope (2.2) with (a) Asc = 1, ut = a1 = 10 (in the laser period units): (b) ASc = 2. 
61 = az = IO; (e) As = 3. UI = az = 10. In the lower row Asc = 2 with (d) 01 = 10, 02 = 50 
and the envelope (2.2); (e) U[ = 5, uz = 20 and the envelope (3.1); (0 01 = 5,  a2 = 20 and 
the envelope (3.2). 

in which the time-dependent function ai@) is equal to the probability amplitude of detecting 
the unperturbed state li) in the quantum state I@@)), 

Knowing this solution we can calculate the time-dependent dipole element d(t), 

(3.5) 

and the power spectrum of scattered radiation S(S2), which is proportional to the modulus 
squared of the Fourier transform of d(t)t ,  

t This is in fact the well known result from classical electrodynamics. which states that the power spectrum of 
light radiated by a time-dependent electric dipqle is proportional to the square of the Fourier tnnsform of the 
second time derivative of the electric dipole moment (see, e.g., Jackson 1975). 
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Let me emphasize here that for an n-state quantum system studied in this paper we have 
(not accounting for statistical mixtures of states) n different power spectra Si(S2); S,(Q) 
corresponds to the case in which in the remote past our quantum system has been prepared 
in the ith pure state. In our further considerations we assume that in the remote past the 
system was in its ground state. 

One can learn from figure 5, that the power spectrum becomes more and more 
complicated as the peak intensity increases and that for A,, 2 2 there appears an additional 
peak, the position of which is independent of the peak intensity of a laser pulse. Thus, 
any avoided crossing leads to the appearance of  an additional peak and to the increase 
of the background in the power spectrum. The physical interpretation of this fact is as 
follows. At the avoided quasi-energy level crossing (let us say of i and j levels) the Floquet 
wavefunction, which corresponds before the avoided crossing to the ith quasi-energy, splits 
after~the avoided crossing into the superposition of two Floquet wavefunctions. This splitting 
can symbolically be written as 

I @ i ( t ) )  --t d t ) l @ i ( t ) )  +b(t)l@j(t)). (3.7) 

The probability of passing from ] @ j  (t)) to l@j ( t ) )  is given by formula (2.4). Consequently, 
such splittings will induce changes in time of the electric dipole moment during the switching 
on and off of the laser pulse. Hence, the power spectrum of scattered light will be modified. 
Such modifications are caused by the interference of two Floquet states in the above formula, 
but also by changes of forms of I h ( t ) )  and l @ j ( f ) )  at the avoided crossing. This means that 
one can expect a new structure in the power spectrum provided that the coefficients aft)  and 
b ( t )  differ significantly from zero or unity, or in other words, the avoided crossing is not 
too sharp (in this case a ( t )  N 0) or too broad (in this case b ( t )  Y 0). Positions of additional 
peaks caused by avoided crossings can depend on the form of the laser pulse. Since in our 
investigations the laser pulse has a long (in time) plateau for zero intensity (i.e., when the 
laser pulse is slowly switched on and off), the additional peak in figure 5 corresponds to 
the transitions between,Floquet states at zero intensities. For laser pulses that have plateaus 
at non-zero intensities we can observe additional peaks located at different positions. This 
aspect will be addressed elsewhere. 

To recapitulate, this result suggests that for a given peak intensity of a laser pulse, the 
more avoided crossings appear in the spectrum of quasi-energies the more complicated, if 
not to say chaotic, the power spectrum of scattered light is observed. Such arelation indeed 
holds as we are going to show shortly. 

4. Two-well potential model and scattering of laser pulses 

Quantum chaos, as far as we know, was introduced in the 1970s as a quantum counterpart of 
the well defined classical chaos (Schuster 1984, Eckhardt 1988, Izrailev 1990, Nettel 1992). 
However, after many years of very intense investigations quantum chaos is still not clearly 
defined. Moreover, it seems that classical chaos is suppressed or at least strongly inhibited 
by quantization, which means that chaos is probably absent in our microscopic world 
and that fluctuanons observed in quantum systems would have no relations with classical 
deterministic chaos. Examples in which quantum chaos could appear are for instance atomic 
systems in the presence of a strong magnetic field (Friedrich and Wintgen 1989, Hasegawa 
ef al 1989) and Rydberg atoms interacting with a microwave field (Casati et al 1987). 
Moreover, it has been shown that in classically chaotic systems the quantum uncertainty, 
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in spite of being assumed to be extremely small so as to make the classical approximation 
possible, increases very quickly, which makes these classical systems strongly quantum 
(Bonci et af 1993, Barone et al 1993). Such macroscopic quantum systems cannot be 
isolated from the environment because even the weakest interaction with the external world 
produces non-negligible effects. Hence, the search for a macroscopic manifestation of 
quantum chaos leads to studying the effects of environmental fluctuations on quantum 
systems, as was proposed for instance by Caldeira and Leggett (1983). We shall not deal 
with these problems here. 

On the other hand results presented in section 2 suggest that at sufficiently intense 
laser pulses the electromagnetic radiation is chaotically scattered by matter. Indeed, for 
weak laser pulses frequencies of the scattered light are multiples of the frequency of the 
incident light. However, for strong pulses the situation becomes much more complicated, 
because as well as peaks corresponding to the previously mentioned frequencies, there also 
appears a very strong background in the power spectrum. This means that we observe a 
‘random’ scattering of light, which could lead to the definition of quantum chaos for systems 
interacting with a strong laser pulse. 

For realistic condensed-matter systems the situation is much more complicated than for 
the two- or three-level models considered so far. The number of avoided crossings that a 
given quasi-energy surface passes during the switching on and the switching off of laser 
pulses can be very large. A detailed numerical analysis of such a complicated system is 
impossible without the use of supercomputers, but even in this case one has to make far- 
reaching simplifications. For this reason we shall deal further with a still simple, although 
sufficiently interesting, two-well msdel defined by the following potential: 

In our further analysis we shall fix the parameters of the laser pulse, i.e., the shape of the 
envelope, peak intensity (Asc = 6) and the central frequency (o = 2),  and we shall change 
the parameter b for given V, and a .  The spectra of quasi-energies for three increasing 
values of b are presented in figures 6, 7 and 8. We see that this spectrum becomes more 
and more complicated as the ‘control’ parameter b increases. For b = 1 the ground state 
does not meet any avoided crossing for Lac < 6. However, with increasing b we observe 
more and more avoided crossings of the quasi-energy corresponding to the ground state. 
Thus, we can expect that as the ‘control’ parameter b becomes larger and larger the power 
spectrum of scattered light is more and more chaotic. Indeed, such a situation is presented 
i n  figures 9, 10 and 11. As the measure of the ‘randomness’ of scattered light we have 
taken the autocorre:ation function A f t )  of the dipole moment, defined as 

A( t )  = d r  d(t - z) d(r). (4.2) s 
It appears that the amplitude of this function decreases as the ‘randomness’ of the power 
spectrum increases. The results presented in figures 9, 10 and 11 indicate the existence of 
classical chaos in the power spectrum of scattered light, whereas figures 6, 7 and 8 show 
something that could be called quantum chaos, because the existence of avoided crossings 
of quasi-energies is a purely quantum effect, which does not have a counterpart in classical 
theories, in which energy changes continuously. Thus, the chaotic scattering of realistic laser 
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pulses (but not pulses modelled by rectangular envelopes) and the 'chaotic' distribution of 
avoided crossings of quasi-energies are very strongly connected with each other. We can, 
therefore, expect that the distribution of avoided crossings could provide a quantitative 
measure of quantum chaos (if one accepts this notion) for  quantum systems interacting 
with an oscillating force. Our findings agree with suggestions already stated by Graffi er 
al (1987), Heiss and Sannino (1990), Goldberg and Schweizer (1991) and Takami (1992) 
where the subject of quantum chaos has directly been linked to avoided level crossings. 
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Figure 6. Twa Brillouin zones of the Floquet Specmm 
(quasienergies modulo m) far the two-well 
potential (4.1) with V,, = 9, a = 0.2 and b = 
1. The quantities Ei(A) jm are plotted as functions 
of the dimensionless parameter A,, = Am-3/2 for 
m = 2 (in arbitrary units). The ground-state energy 
EL = 13.354. We have plotted the first MPl,,, = 10 
quasi-energies corresponding to M,, = 20 Floquet 
states that have the biggest projections on the fint 
NplOc radiationless stationary states. For such Npial 
the quasienergy spectrum is stationary with respect to 
the increase of Mmm. We do not plot quasi-energies 
of all calculated Floquet states because (i) the highest 
states are irrelevant (they are very wed+ coupled 
to the ground state) and (ii) [he figure would not be 
transparent, 

SCALED LASER-FIELD AMPLITUDE 

F i y e  7. The same as figure 6 but with b = 2, 
Mp~ol = 15 and M,,, = 30. The ground-state energy 
EI = -3.442. 

5. Resonant scattering of electrons by quantum wells 

Resonances are one of the most interesting phenomena in scattering processes. In the 
presence of the oscillating external electric field assumed to descnbe a laser field of a 
constant intensity, resonances also appear in cases when radiationless processes do not 
exhibit them. These resonances correspond to the possibility of an electron with energy in 



1588 J Z Kamihki 

SCALED LASER-FIELD AMPLITUDE 

Figure 8. The same as figure 6 but with b = 4. Nplol = 30 and N,, = 60. The ground-state 
energy Eg = -3.442. 
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l b l  

FREQUENCY l i n  loser-  fraq. "uni t 51 TinE ( i n  loser-poriod units) 

Figure 9. (a) The power specvum Si@) for i = 1 as a function of nfo for o = 2 and 
two-well potential with VD = -9, n = 0.2 and b = 1. The envelope of the laser pulse is 
defined by the equation (2.2) with cl = 50, 02 = 100 (in laser-period units) and Asc = 6. (b) 
The autocorrelation function A(t) of this power spectrum as a function of $IT, T = 2 ~ 1 0 ,  
normalized in such a way that A(0) = 1. Small oscillations of the amplitude of A(1) are due to 
the fact that the ground state meets ils f i s t  avoided crossing for just greater than six. 
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Figure 10. The same as figure 9 but wlth b = 2. 
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Figure 11. The same as figure 9 but with b = 4 
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the vicinity of EB + kw (EB is the energy of a bound state of the radiationless problem) 
emitting k photons and passing into a quasi-bound state with energy approximately equal 
to Eg, and then returning into an unbound state after having absorbed the corresponding 
number of photons. Ln order to study such processes we have performed an exact numerical 
analysis of the one-dimensional model, i.e., we have solved numerically the Schrodinger 
equation 

where the function A ( t )  describes an electromagnetic plane wave in the dipole approximation 
(i.e., we neglect the space dependence of the electromagnetic phase), 

A ( t )  = dcos(wt) (5.2) 

and V ( x )  is a static potential intended to model a quantum well. Note that we have neglected 
the A2(r) term which can be eliminated by the space-independent unitary transformation, and 
hence does not change reflection and transition probabilities. For simplicity, the reflection 
and transition probabilities have been calculated for the square-well potential 

0 r 

1.0 

0.5 

0.0 
0.2 0.k 0.6 0.8 

(5.3) 

E 
Figure 12. Elastic reflection probabilities ro as functions of energy for the square-well potential 
(5.3) with V = -1.0. n = 0.7 and for (a) o = 1.0. (b) o = 0.5, (c) o = 0.4; solid line, 
uo = 0.4; long-dashed line. uo = 0.5: short-dashed l i e ,  a" = 1.0; uo = A/o in atomic units. 

In figure 12 we present the elastic reflection probabilities for the square-well potential 
having only one bound state of energy -0.45 (hereafter, we use atomic units). It is clear 
from this picture that with increasing intensity of radiation we observe a shift of the resonant 
peak and an increase of its width. This corresponds to the shift of the real part ER of the 
complex energy E = ER - i r / 2  of the quasi-bound state (this is the so-called dynamic 
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Stark shift) and to the increase of the photoionization probability rate. It is clear from these 
results that the qualitative behaviour of the dynamic Stark shift depends significantly on 
the frequency of the laser field. For high frequencies (with respect to the bound energy) 
the quasi-bound states are shifted up. Such a behaviour is in ageement with theoretical 
predictions of the so-called high-frequency approximation (Gavnla and Kamiliski 1984). 
On the other hand, for low frequencies of the laser field the deeply lying quasi-bound states 
are shifted down, which is again consistent with the results presented by Kaminski (1987, 
1989, and references therein). 

Let us emphasize in closing another interesting phenomenon which is shown in figure 
12(b). With increasing intensity of the laser field the scattering resonance dives into 
'negative energies' and appears for energies of the-order of the laser photon energy. This 
phenomenon is due to the fact that with increasing intensity the quasi-bound state is shifted 
downwards to such an extent that one laser photon does not suffice to ionize the system 
and the electron needs to absorb an extra photon in order to jump from the discrete state to 
a continuous one. 

6. Conclusions 

In this paper we have presented some non-perturbative aspects of the interaction of 
semiconductor heterostructures with intense laser fields. Moreover, the laser-induced 
modification of the energy band structure has been considered elsewhere (Kamiliski 1993). 
In our investigations we have assumed for simplicity that the laser field is described by 
a classical electromagnetic vector potential. Such an assumption is only moderately valid 
because the amplitude, frequency and phase of the laser field can all randomly fluctuate. 
This means that the real laser radiation should be described as a stochastic process. This 
aspect of the interaction of matter with radiation is under consideration now. Moreover, 
effects induced by the position-dependent effective mass ire also being investigated ,and 
will be presented in due course. 
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